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Abstract

A model-assisted feedback control algorithm, a type of generic model control, is implemented to control cure in resin transfer molding.
This control algorithm calculates an apparent temperature of reaction based on the cure data input form a sensor, and this temperature is used
to compare the actual rate of reaction to the desired rate and to calculate the mold set-point temperature. The model input into the control
algorithm is an empirical cure model of a pre-ceramic polymer with an Arrhenius temperature dependence from 55 to 95 °C. In this work, the
effect of varying control parameters is evaluated through cure simulations and experiments. Also, the effect of noise on the controller
robustness is evaluated through simulation and experiment. Control parameters are evaluated for 55 and 95 °C. © 2002 Published by Elsevier

Science Ltd.
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1. Introduction

The necessity for process control during composite manu-
facturing has been widely recognized [1]. During the liquid
molding process, injection pressure and temperature are
commonly controlled to ensure part uniformity. However,
the most critical parameter to assess and control would be
the cure state of the polymer because it effects resin domin-
ated end-use properties such as compression and flexure
strength [2,3]. The cure is defined as the amount of reactive
species present at any time during the reaction compared to
the amount at time zero. Variation of the cure of a composite
from the desired cure state is a result of numerous factors
including improper resin/catalyst mix, resin, catalyst, and
equipment aging, batch-to-batch variation of resin system
and even humidity. One approach to control part quality is
an integrated cure sensing and process control system. The
process control system must be able to use the sensor infor-
mation to make decisions about manipulation of the cure.
The most common variable used to control the cure of the
resin is temperature.

There are volumes of information about sensors designed
to monitor resin cure directly or indirectly. Most of the
sensors investigated are based upon dielectrics [4,5], ultra-
sonics [6], or spectroscopy [7—10]. There are advantages
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and disadvantages associated with each type of sensor.
The choice of sensor is dictated by the properties of interest
and its potential for interfacing with a control system. For
example, dielectrics and ultrasonics are capable of moni-
toring changes in resin properties over large volumes.
However, both dielectrics and ultrasonics are indirect
measures of cure that require correlation with another para-
meter that can be related to composite quality. In dielectric
measurements, conductance is roughly correlated with vis-
cosity. However, the conductance early in cure is dominated
by the presence of ions and can overwhelm the important
information relating to viscosity. This phenomenon can
hinder control efforts early in the cure where control is
most effective and easiest to implement.

Spectroscopic sensors are commonly fiber optic and
measure local resin properties [11]. In most cases, they
are noninvasive and can monitor cure at the center of the
part where large temperature exotherms are most common.
To monitor resin cure fiber optic sensors have been devel-
oped that measure various material properties such as near-
infrared attenuated total reflectance [12], near-infrared
external reflection [13], refractive index [14], fluorescence
[15], etc. Some fiber optic sensors even measure resin cure
close to fiber surface through evanescent wave spectroscopy
[16]. In this work, a mid-infrared internal reflection surface
sensor based on evanescent wave spectroscopy was selected
to follow the cure during the liquid molding of a thin part.
The curing reaction can be followed directly using this type
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of spectroscopy which is effective throughout the entire
cure. Knowledge of the progress of the reaction throughout
the entire cure of the composite is mandatory if process
control is to be implemented.

Briefly, in previous work [17], a prism surface sensor
based on attenuated total internal mid-infrared spectroscopy
was developed and used to remotely collect the infrared
spectra of a pre-ceramic polymer injected into the resin
transfer mold. Currently, the infrared beam exits the Fourier
transform infrared (FT-IR) spectrometer, and a system of
optics and hollow waveguides directs the beam through the
ZnSe surface sensor and then to the detector. The resulting
infrared spectrum is analyzed, and a number representing
the cure state of the resin is computed for use in the process
control computer. The process control computer runs the
model-assisted feedback control algorithm and makes a
control decision by inverting a kinetics model of the resin
cure.

The liquid composite curing process studied in this work
is a typical batch process during which the controller is
required to manipulate the independent variable (tempera-
ture) so that the controlled or dependent variable (degree
of cure) follows a pre-specified (set-point) trajectory. Such
a trajectory is typically obtained off-line using a model
system. Feedback control structures have been employed
in the context of batch process control in order to achieve
disturbance rejection and set-point tracking. A variety of
control system design techniques have been proposed in
the context of batch process control. Nonlinear cascade
structures consisting of proportional and proportional/inte-
gral controllers with varying gain have been experimentally
tested [18] for the control of batch reactors. Nonlinear
controllers based on global input/output linearization have
been developed and compared to conventional proportional/
integral/derivative types for typical polymerization reactors
[19]. More recently, input/output linearization has been
employed in order to synthesize nonlinear cascade struc-
tures [20]. Through simulation and experiments, the afore-
mentioned studies have demonstrated improved control
performance compared to conventional linear designs.
Other approaches to the control of batch processes are
based on on-line optimization techniques coupled with
state estimation [21]. Research investigations have also
focused on various process control aspects of resin cure in
composites manufacturing such as on-line optimization-
based control of the cure cycle of composite laminate
materials [22], model predictive control with parameter esti-
mation and model adaptation in liquid composite molding
[23] and control of the injection pultrusion process using
flow, heat transfer and cure process models [24].

In the present paper, real-time sensing of the chemistry
of the process is integrated with feedback control in order
to achieve set-point tracking and disturbance rejection
throughout the curing process. The primary output is the
remaining monomer (degree of cure), which is measured
using infrared spectroscopy. The ability to obtain real-

time chemistry measurements eliminates the need for
nonlinear state estimation in this problem. The secondary
measurement is the temperature of the curing chamber. The
two measurements are utilized in a cascade structure
whereby the deviation of the measured degree of cure
from its set-point determines the desirable temperature
set-point. The control algorithm employed in this primary
loop is conceptually similar to generic model control
approaches [25]. A simplified cure model based on iso-
thermal cure experiments is employed to relate system
temperature to the expected remaining monomer. The
temperature set-point is then obtained via a control algo-
rithm that requires solution of nonlinear equations. This
work considers the behavior of this primary control loop
through simulation and experiment. The effect that noise
in the cure measurements has on the performance of the
controller is also examined.

2. Experimental
2.1. Materials

The Blackglas™ 493A resin system was used as-received
from Allied-Signal (Des Plains, IL). The catalyst systems
were used in this study. The 493B catalyst system was
mixed as 2 pph by weight in the 493A monomer. A platinum
cyclovinyl complex, mass fraction of 2—3% Pt in cyclic
vinylmethylsiloxanes, was used as a second catalyst as-
received from Hiils America (Piscataway, NJ). This com-
mercial catalyst was mixed as 0.4 pph in 493A. For all
curing experiments, the 493A resin and catalyst system
were mixed at room temperature before heating.

2.2. Instrumentation

FT-IR spectra were taken using a Nicolet Magna 550 FT-
IR spectrometer equipped with mercury—cadmium-—telluride
(MCT-A) detector and a nitrogen purge. A heatable ZnSe
horizontal attenuated total internal reflection (HATR)
accessory was used for the process control experiments as
a convenient surface sensor and mold since the sensor was
previously demonstrated in a composite molding experi-
ment [17]. Experiments performed with the HATR acces-
sory were done with 8 cm ™' resolution and 32 co-added
scans with a 5 min delay between spectra at 55 °C and
2 min delay between spectra at 95 °C. The room tempera-
ture resin was injected into the pre-heated HATR accessory
for the kinetic experiments.

The acquisition of spectra was automated using a macro
programmed from the Omnic 1.2a software. Using this
macro, the spectra are collected and saved. The areas of
the peaks of interest are computed and stored into a file.
This macro calls two Quickbasic executable files. The first
executable program sends the time to the process control
computer through a serial-to-serial port connection. The
second executable program reads the peak areas from the



J.P. Dunkers et al. / Composites: Part A 33 (2002) 841-854 843

file. The computer calculates remaining monomer and sends
this index to the process control computer. The reactive and
internal standard peaks used to monitor the reaction are the
Si—H stretching peak (2155cm™') and a methyl group
deformation peak (1245 cmfl). In this study, the total
collect and data processing time before the index is sent
to the process control computer in approximately 1.5 min.
The collection and processing time is small compared to the
total cure time of 5 h.

The control algorithm was programmed in Quickbasic
and executed on a laptop 1486 computer for this prototype
mold and sensor system. After each spectrum, the tempera-
ture set-point was manually adjusted on the temperature
controller to the output temperature from the process control
algorithm. Manual adjustment of the set-point temperature
is acceptable since the cure is slow. The simulated control
experiments were programmed in Visual Basic.

3. Results and discussion
3.1. Process description

The processing equipment includes a mold, a pump used to
inject the resin into the mold as well as sensors and actuators
for the base-level temperature control loop. The fluid pressure
at the mold inlet and outlet are regulated permitting
programmed injection profiles. Pressure control is achieved
by connecting the fluid injection and the fluid overflow pres-
sure pots to both high- and low-level pressure source through
three-way solenoid valves. Vacuum pressure transducers
mounted at the mold inlet and the mold outlet obtain pressure
measurements required by the pressure controllers. The pres-
sure controllers are resident in the process control computer
but are run on a stand-alone data acquisition and co-processor
board. This internalized arrangement of the pressure con-
trollers was chosen to permit very close co-ordination
between the base-level pressure control and a planned high-
level controller for flow control in multi-port molds.

The mold is heated electrically, and a stand-alone con-
troller regulates the amount of electrical power supplied to
the mold. Temperature measurements are supplied to the
controller by resistance temperature devices mounted in
the mold wall and within the part itself. Any one of the
temperature signals may be chosen to be the measured vari-
able for the controller. All the measured temperatures are
relayed to the main control computer for further manipula-
tion, if required. Large temperature gradients may require
additional manipulations to choose an appropriate set-point
temperature to download to the stand-alone controller. The
set-point for the temperature controller is set remotely from
the control computer, and the set-point is determined by the
cure controller resident in the computer.

3.2. Process and controller model development

Cure data is usually given in terms of amount of material

reacted (degree of cure) or the amount of remaining material
(remaining monomer). In our work, experiments were con-
ducted with a polysiloxane resin, and kinetic model of that
resin was developed for use in the control algorithm and
the simulations. The kinetic model used by the controller
consists of a function F that was fit by a double exponential
model of the form

A(t) = F(C,1,T) = Ag(c; e 11" + ¢y e 70 (1)

where A(?) is the monomer concentration at time ¢, Ag is the
initial monomer concentration, ¢; and ¢, are weighting
factor, and k; and k, are reaction rate constants [28]. Addi-
tionally, the reaction rate constants were fit to Arrhenius
expressions to include the temperature dependence of the
reactions

ki = ke MMERD =12 (2)

where AH; is the activation energy, k;o is the frequency
factor of the reaction rate constant, and the subscript i can
be either 1 or 2. The vector, C, of kinetic constants shown in
Eq. (1) is defined as C = (cy, ¢3, k0, k9, AHy, AH,). The
double exponential form of the kinetic model is sufficiently
complex to demonstrate the ability of the controller to invert
many types of kinetic models, and such changes in rate
behavior are common in polymerizing systems at high
conversion due to the onset of diffusional limitations [29].

Desirable process operation is defined in terms of a desir-
able reference cure trajectory (programmed cure, Ay(?)) that
the system should follow. This reference trajectory corre-
sponds to the temporal evolution of a model system under
constant temperature (programmed temperature, 7T;,) and is
described by Eq. (1) for a given parameter vector C. Dis-
turbances lead to variations in the parameters in C, i.e. the
actual system has parameter values other than the nominal
model system used to obtain the reference trajectory. Hence,
when the (constant) programmed temperature 7, is applied
to the actual system, the resulting temporal evolution of
the cure will be different than the desirable one (i.e. the
programmed cure Ay(#)). The problem is addressed in this
work through the design of a cascade feedback control
system. The control problem is defined as follows. Manip-
ulate the mold temperature so that the actual remaining
monomer follows a given reference cure trajectory in the
presence of disturbances. The remaining monomer is the
primary measurement and is employed by the primary
controller in order to determine the set-point for the second-
ary loop that regulates the system temperature. The design
of the primary controller is the focus of the section. Standard
linear control techniques can be employed to design the
secondary controller.

Let A,(7) be the measured (apparent) remaining monomer
at time . A,(f) will in general be different from the
programmed remaining monomer, Ay(#), which corresponds
to the reference trajectory. The isothermal kinetic model,
Eq. (1), is inverted by the control algorithm to obtain the
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apparent temperature 7,(7):
A) = F(C,1, Ty(0) = T,() = F~1(C,1,A,(1) 3

where the exponent (—1) indicates inversion (i.e. solution)
of the nonlinear equation.

In practice, the inversion indicated in Eq. (3) is performed
via a numerical procedure which computes the solution,
T,(f), within some pre-specified tolerance. The apparent
temperature, T,(¢), corresponds to the constant polymeriza-
tion temperature necessary for the system to match the
apparent and programmed remaining monomer amounts at
time . The apparent temperature is a fictitious quantity that
depends on time. If A,(r) = A,(?), then the apparent and
programmed temperatures at time ¢ are equal. Assume that
over the entire range of remaining monomer values, the
temperature affects the degree of cure in a monotonic
manner. This is true for ¢;AH,;, ¢;AH, positive since a
straightforward calculation demonstrates that based on
Eq. (1), and under such conditions, dF/dT <0 for all
times. The above conditions hold for our model. Hence,
increasing the processing temperature results in reduced
amounts of remaining monomer for the same processing
time. Then, the temperature set-point can be selected so
that the tracking objectives are met. During a chemical reac-
tion, increasing the processing temperature decreases the
amount of remaining monomer. Thus if, A,(f) <A,(?)
(achieved reaction more than the programmed), 7,(t) > T,
is implied. Provided that the real process follows Eq. (1) for
different, but unknown, parameter values (C), one can safely
postulate that a reduction in the processing temperature will
slow down the reaction so that in the future, the difference
Ay(t) — A, (1) decreases. If A,(¢) > Ap(?), the processing
temperature should increase to improve tracking of the
reference trajectory. The following generic expression is
suggested to update the processing temperature set-point
value

Tsp(t + At) - Tsp(t) = Hl(Tp - Ta(t)) (4)

where H, is a potentially nonlinear bounded function such
that

>0 ifx>0
H :R—RxER—H(x){ =0 ifx=0 5)
<0 ifx<0

where R is the set of real numbers.

In summary, Eq. (4) combined with Eq. (3) defines a
feedback control algorithm which uses composition
measurements, A,(7), to compute the desirable temperature
set-point for the interval, ¢ + A¢. This control algorithm
does not consider differences in the reaction rate between
the reference model (programmed trajectory) and the
process. Incorporation of such information in the control
algorithm, Eq. (4), will generally improve control quality.
This task is tackled next.

The process model in Eq. (1) can be differentiated with

respect to time, and an expression for the incremental
change in the degree of curve over a time interval Az can
be obtained:
oF A (1) — A, (t — Ar)

G(C,t,T)) A — =~ 2 L . 6a

(T & o (6
Alternatively, Eq. (1) can be written at time ¢ and t — Af and
ratioed to provide an equivalent expression for the change in
the degree of curve over the time interval At:

A  F(C.1.T,)
T A(@—An  F(C,t—ALT,)

>

G,(C,1,T,)

1+ ﬂel(kl_kZ)
S — . (6b)
1+ SLet=2nk k)
(%]

Employing the apparent cure values in Egs. (6a) and (6b), a
new quantity called instantaneous temperature 7;(f) can be
defined

A =AM ZAD _ G 01 Ty = T

At
= G (cop MO A A0) (7a)
or
% = Gy(C.1.Ti(1) = T;(1)
_ G2‘1<C, t, %) (7b)

T(1) is analogous to T,(). Egs. (7a) and (7b) need not result
in the same instantaneous temperature value. In this work,
Eq. (7b) is used within the control algorithm. If the real
process parameter vector C is identical to the one employed
in Egs. (1), (6a) and (6b), the T(¢) is equal to T, and is
constant. In general, the instantaneous temperature will be
a function of time, and the difference T(#) — T, is a measure
of the difference between the process and the model trends.
As a result, with this measure the generic control law (Eq.
(4)) is extended as follows

Tsp(t + At) - Tsp(t) = Hl(Tp - Ta(t)) + HZ(Tp - Tz(t)) (8)

where H, is potentially a nonlinear bounded real valued
function that is similar to H,, since the monotonicity proper-
ties G, with respect to T are similar to the corresponding
properties of F.

A simplified version of Eq. (8) that is used in this work
employs a linear right-hand side

Tyt + A1) = Ty (D) = (T, — Ty(0) + r(T), — Ti(1))
®

where T, is the temperature set-point downloaded to the
base-level temperature controller, and @, and w, are tuning
constants. When both the degree of cure, A,(¢), and the rate
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of change of A, equal the programmed quantities at the same
time, the apparent temperatures, T, and T;, will equal the
programmed temperature, 7, and Eq. (9) indicates that no
change in the system temperature is required. There are
more elaborate ways of using the apparent kinetic tempera-
tures including model-based predictive control with or with-
out model adaptation [23], but the model-assisted feedback
control algorithm described earlier is expected to be
adequate for the slow-curing chemical system under current
consideration.

In practice, physical constraints limit both the allowable
and achievable temperature values for the system. Further-
more, since Eq. (9) has characteristics of an integrator,
appropriate measures should be taken in order to avoid the
possibility of reset windup. As a result, and in the spirit of
‘conditional integration’, the following alternative to Eq. (9)
is actually implemented

Thew = Top(0) + @, [(T}, — T,(0) + (T, — Ti(1)],

Tu if Tnew = Tl]
(10)

Tsp(t + At) = Tnew if Tl < Tnew < Tu
Tl if Tnew = Tl

where T, and T; are pre-defined, fixed, upper and lower
temperature set-point bounds. These bounds can be selected
based on material limitations.

The studies undertaken in this work focus on the effect of
the two tuning parameters in Eqgs. (9) and (10) on the
achieved tracking. In Sections 3.3-3.5 that follow some
more information is provided regarding the well-posedness
of the proposed control algorithm as well as implementation
issues.

3.3. Control system analysis

The cascade feedback configuration consists of an inner
temperature loop, which is considered, in this discussion to
be stable. In order to implement the ‘master’ control algo-
rithm (Egs. (9) and (10)), the existence of the inverses in
Egs. (3) and (7b) should be demonstrated. This is possible
with the help of the inverse function theorem [27], which
establishes that inversion of F (and G)) is possible provided
that the function is continuously differentiable with respect
to temperature, 7, and this derivative is nonvanishing.

3.3.1. Calculation of the apparent temperature T,(t) via
Eq. (3)

The derivative of F with respect to its third argument, 7,
can be computed as follows:
oF(C,t,T) _ —1

AH, AH,
aT = F(ClkllTe It+C2k2tTe Zt).
(11D

Hence, 0F (C, t, T)/dT is negative (and nonzero) for all times
provided that (c;AH;) > 0, i = 1,2, which holds.

The inversion of F'in Eq. (3) is not feasible for any value,
A,(1), of the measured monomer concentration. At time ¢ >
0, Eq. (3) has a solution provided that the following inequal-
ity holds

F(C.0) A lim F(C.1,T) < Ay(1) < Ag (12)

where the quantity Fi(C.,f) is computed for the reference
model given by Eq. (1), and it is equal to:

Fi(C, 1) = Aglc; e 10" + ¢, e 0y,

Provided that Eq. (12) holds, then it follows that Eq. (3) will
give a finite value for the apparent temperature, which is
also unique.

In cases where the measurement contains a lot of noise, or
when there is significant parameter deviation between the
process and the reference model (given by Eq. (1)), it is
possible that the bounds in Eq. (12) could be violated. If
the upper bound is violated, which can only be possible due
to the presence of noise, then the calculation of T,(¢) is not
performed and the previous set-point value is maintained
(Section 3.4). To cope with violations of the lower bound,
we define F| (C, 1) = F|(C,t) + &£ < A, for some positive
&. The calculation of the apparent temperature 7,(f) is now
modified as follows:

F7I(C,1,A,(0)
=1 _,
F (C,t, FLE(C, 1) ifA,®0) = FLE(C, 1)

if Ay > Ay(1) > F(C.1)

(13)

Eq. (13) practically imposes a maximum value on the
apparent temperature. This bound is equal to the apparent
temperature that corresponds to F| (C, ). Since F| (C, 1) >
Fi(C, 1), this upper bound is always finite. Thus, the com-
puted apparent temperature values will satisfy 0 < T,(f) =
F™N(C, 1, F(C,1) < ) for all 1.

3.3.2. Calculation of the instantaneous temperature Ti(t) via
Eq. (7b)

First the derivative of G, with respect to T is calculated to
determine the sign of this derivative for different times. For
t>> At (t — At = t, 2t — At = 2f), the expression for the
derivative is simplified as follows:

0 _ (A
ar (G = G (Aa(t ) )

—AtA2 _ AH _ AH.
S 0 e k‘Z’c%kl 1 +e k2210%k2 2
T°F*(C,t — A1, T) R R

+ ei""*"z’%(klAHl + szHz)}.

As a result, G, is a decreasing function of the temperature
or, equivalently, the derivative of G, with respect to T is
negative and nonzero. Then, there exists a unique solution
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of Eq. (7b) (i.e. instantaneous temperature) provided that the
following inequality is satisfied:

Aq(1)

<
Gau(C.1) At — Ar)

(14)

The quantity on the left of Eq. (14) is defined as:

1+ c_zet(kl.osz,o)
€1
1+ C_ze(f*Af)(kl.O*kzo) '
Cq

G, (C.0) & lim G,(C.1,T) = g kiodr

When Eq. (14) is violated, there exist no solutions of
Eq. (7b). To guard against this possibility, we proceed as
in the previous case of the calculation of the apparent
temperature. In particular, if the upper bound of Eq. (14)
is violated, the calculation of the instantaneous temperature
is not performed and the application of Eq. (10) includes
only the terms that depend on T, — T}, provided that T, can
be calculated (Section 3.4). To prevent difficulties due to
violations of the lower bound of Eq. (14), the quantity
G,,..(C, 1) is introduced such that G, .(C,1) & G,,(C, 1) +
& < 1 and ¢ is a given positive number. Then, the computa-
tion of the instantaneous temperature 7(¢) can be modified
to improve robustness:

—1 A, (1) R A ()
o G, (C, f, m) if 1> m > GZ,I,g(C, 1)
o = . A,
G (€. Gyl Ct)) i Aa(,—f)m) = Gy, ,.(C,1)
(15)

This modified calculation of the instantaneous temperature
also imposes an upper bound on the computed value of T;(¢)
(see Section 3.3 on T,(?)).

Remark. During the simulation and experimental studies
performed in this work, the lower bounds defined in Egs.
(12) and (14) were never violated. This is expected since
they correspond to limiting behavior at high temperature,
which is beyond what is actually observed, even in the case
of significant parameter deviations. Their advantage is that
these conditions allow establishing bounds on the calculated
apparent (Eq. (13)) and instantaneous (Eq. (15)) tempera-
tures, which facilitates the stability analysis that follows.

3.3.3. Stability of the closed loop

Stability is established in the L, sense as this is defined by
Vidyasagar [26]. This property establishes that all signals in
the closed loop remain finite, and they are bounded by an a
priori known quantity. Due to the chemical characteristics
of the system, all concentration quantities are trivially finite
and a priori bounded (resin is only consumed up to elimina-
tion). Hence, the focus is on the various temperature signals
(actual and computed).

L, stability of the closed loop requires that the following

holds:
T(t) 0> TS (t) [e 3]
JA0 < A < ) such that max{” e, U700 }
IT:®lloos [T:Dlloo
= A. (16)

It remains to provide an estimate for the parameter A.

For L.-stable and linear inner temperature loop (mapping
T, to actual mold temperature 7') it follows that there exist
positive constants a and 3 such that

1Tl = Ty ()]0 + B

where |||« is the infinity (maximum) norm.
Based on the last expression and on Egs. (10), (13) and
(15), it follows that the bound A should satisfy:

{mm+m,wm+m,n T, }
max . .
”F (C’ , F],g(C’ t))”oo’ ||G2 (C’ Z, GZ,I,S(C? t))”OO

=A< o, (17)

i

The max on the left-hand side is finite for finite time inter-
vals because of continuity with respect to time and the
kinetic properties of the system. The above estimates, and
the stability properties they imply, are valid in the presence
of noise.

3.4. Process simulation

Simulations were conducted to verify the efficacy of the
above control algorithm in preparation for implementation
on the processing hardware. The simulation accounted for
the limited heating and cooling rates possible on the pro-
cessing equipment but assumed an isothermal programmed
cure cycle (i.e. T, = constant) and negligible spatial tem-
perature gradients in the mold. Thus, the thermal model of
the process predicts the mold temperature at time ¢ as 7(f)
according to

T, () if —r At <Tg(H) — T(t — Ar) < ryAt
T()=4 Tt — A + At if T, (1) — T(t — At) > At
T(t — A — rAr if T(r — A1) — To, (1) > r At

where ry, is the maximum heating rate, r. is the maximum
cooling rate, and the At is the simulation time step. Since the
controller forces the system into a nonisothermal pathway,
Eq. (1) could not be used directly to simulate the cure
process. Rather, Eq. (6b) was employed to compute
A(t + Ar) given the value of A(f) and T(¢).

The set of kinetic parameters C; used in the simulation
model may be different than the set C used in the controller
model. For the purpose of simulation disturbances in the
chemical kinetics, C; # C was specifically implemented.

A limited set of simulations were conducted to assess the
behavior of the controller under perfect measurement condi-
tions, however, the experimental measurements of A were



J.P. Dunkers et al. / Composites: Part A 33 (2002) 841-854 847

12
1.0 5 493B Catalyst, 55°C
g 081 Commercial Catalyst, 55°C
2
[e]
=
o 0.6
C
£
£
2 04 - .Commercial Catalyst, 95°C
027 493B Catalyst, 95°C
0.0 ] 1 ] L |
0 50 100 150 200 250 300
Time (min)

Fig. 1. Examples of isothermal cure data used to generate the kinetic
equations.

found to contain small amounts of noise and uncertainty. To
assess the impact of noise on the controller, small random
numbers were added to the computed value of A(¢ + Az) to
provide the simulated value of the measured concentration
of remaining monomer in the mold

At + At) = At + Ar) + N,(I(t) — 0.5)

where I'(¢) is the appropriate value chosen from a string of
pseudorandom numbers generated on the computer, 0.5 is
subtracted from I to provide both positive and negative
numbers, and N; is the scaling factor used to adjust the
noise level. The pseudorandom numbers were generated
with the algorithm included in Visual Basic and are
designed to simulate white noise. Several strings of such
numbers were tested by taking discrete Fourier transforms
and flat power spectral densities were obtained. Discrete
autocorrelations also showed that the same strings of
numbers were uncorrelated [30]. To accommodate the
presence of noise, a deadband was included in the control
algorithm. The deadband limits are calculated according to:

D D
Ap() — 5= A1) = Ap(0) + 5 (18)

If the value of the stimulated cure, A, satisfied Eq. (18), then
no control action is executed.

The inclusion of noise may lead to instances where a part
of or the entire controller was not executed, because no
physically meaningful solution existed (see earlier section
for quantitative justification). Since the control algorithm is
based on chemical kinetics, it should be emphasized that the
controller was turned off for reasons relating to the funda-
mental of chemical reactions and not relating to controller
robustness. The first instance occurs when the measured or
simulated degree of cure is greater than 1 (i.e. A;(£)/Ay > 1).

1.02

1.00 4.~ —e— 0% noise

—— 1% noise
- 3% noise

0.98 —'
0.96
0.94
0.92

0.90

Remaining Monomer

0.88

0.86

0.84 T T T T T T T T T
0O 20 40 60 80 100 120 140 160 180 200

Time (min)

Fig. 2. A cure simulation at 55 °C with 493B catalyst and varying amounts
of random noise.

In the instance, no real value of apparent temperature can be
found that would reverse the progress of the reaction. Thus,
when a cure signal greater than 1 is sent to the process
control computer, the entire controller is not executed. A
second case is encountered when the cure increases during a
time step due to the presence of noise (i.e. A (t + Ar) >
Ag(1)). In that case, Eq. (7b), which calculates the instanta-
neous apparent temperature, 7;, has no solution although
Eq. (3) can still be solved to T,. Thus, under those condi-
tions, a value of T, is computed, a value of T; is not, and a
new temperature set-point is generated with Eq. (10) based
only on the difference, T, — T,.

3.5. Simulation results

Examples of cure data used to generate the kinetic equa-
tions (Egs. (1) and (2)) for the control algorithm and simula-
tions are shown in Fig. 1. The isothermal cure profiles
shown are for 55 and 95 °C, and results for both the 493B
and the commercial catalyst systems are displayed. At
55 °C, the commercial catalyst is much more effective in
promoting the reaction. The cure curves at 95 °C demon-
strate the complex kinetics of this system. Initially, the 493B
catalyzed cure progresses more slowly than the cure cata-
lyzed by the commercial catalyst, until about 35% conver-
sion. Then, the rate of cure with the commercial catalyst
becomes slower than for the 493B catalyst. The reaction
catalyzed by the 493B material progressed further after
300 min than the reaction with the commercial catalyst.
The control algorithm described earlier can effectively
control the changing reaction rate at 95 °C. For most of
the results in this work, the cure with the 493B catalyst
will be the reaction to be controlled to the cure profile of
the commercial catalyst.
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Fig. 3. A control simulations with no noise. The simulation was executed
with r, = 5 °C/min, r, = 2 °C/min, and the tuning constants, w; and w,,
were 0.30 and 0.25, respectively. (a) Remaining monomer with and without
control. (b) Temperature profile required for control.

The introduction of noise into a process can severely
damage its controllability if it is not properly compensated
for in the control algorithm. Fig. 2 shows a cure simulation
at 55 °C with 493B catalyst and varying amounts of random
noise. In simulations, noise was added or subtracted ran-
domly up to one-half the amount designated for the noise
level. For example, the amount of remaining monomer
could vary up to £0.5% for a 1% noise level. A noise
level between 1 and 2% was determined to be the amount
of noise present in HATR sensor data.

The difficulty in controlling a process with noise is shown
in Figs. 3 and 4. The control simulation in Fig. 3 contains
data with no noise, while the simulation in Fig. 4 contains
3% noise and deadband. All simulations were performed
with an infinite heating and cooling rate. (The experiment-
ally achievable heating (6 °C/min) and cooling (4 °C/min)
rates can be classified as ‘infinite’ since they have the same
average Cr as the infinite heating and cooling rates as
verified by stimulations for a 2% noise level). The tuning

(a) 1.05

1.00
0.95 +
0.90
0.85 <
Commercial Catalyst

0.80 4 - - - 493B Catalyst, No Control
—e— 493B Catalyst, Control

Remaining Monomer

0.75 | ) 1 L L)
0 50 100 150 200 250 300
Time (min)
(b)
8
T
g
=2
o
()]
Q.
£
()]
|_
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L L ] ! )

0 50 100 150 200 250 300
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Fig. 4. A control simulation with 3% noise and deadband, executed with the
same values of r, r., w; and w, as in Fig. 3. (a) Remaining monomer with
and without control. (b) Temperature profile required for control.

constants, w; and w,, for both simulations were 0.30 and
0.25, respectively. Both conversion curves follow the same
general trend. However, the noisy cure data in Fig. 4 does
not follow the desired cure pathway as closely as the data in
Fig. 3. The cure pathway in Fig. 4 jumps in and out of
the deadband range throughout the simulation. Also, the
temperature changes called for in the simulation with 3%
noise are larger and less smooth than in the 0% noise case.
Such large temperature changes may be expected to cause
large temperature gradients within the part, not described by
the simplified simulation, which would lead to nonuniform
curing and residual stresses. For the cases described here, in
which the noisy signal is not filtered, this control algorithm
is most effective when the deadband is set equal to the noise
level. Setting a deadband smaller than the noise level leads
to large controller instability and poorer control quality than
for the case where those two parameters are set equal to each
other. Setting the deadband larger than the noise level can
smooth the required temperatures changes but only with a
further degradation in control quality.

The values of the tuning parameters, w; and w,, defined
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Fig. 5. Illustration of the effect on control quality by varying w, while
holding w, at a value of 0.25, with 1% noise, at 55 °C.

in Eq. (9), should be assessed for the best controller
performance. The necessity of tuning the controller arises
from the imperfection of the model used in the controller
algorithm. In addition to error introduced by the kinetics
model, the limited heating and cooling rates are not
accounted for in the control model. The best values for w;
and w, may not be the same throughout the temperature
range of interest. This problem may be resolved by setting
these values to a compromise value for the entire tempera-
ture range or by varying them as a function of temperature.
Fig. 5 demonstrates the effect on control quality by varying
w; while holding w, at a value of 0.25 with 1% noise at
55 °C. The cure data with w; = 0.4 proceeds much closer to
the desired cure profile than the data with w; = 1. In Fig. 6,
w, = 0.5 is more effective in meeting the desired cure
profile than w, = 1; while holding w; = 0.25, the noise
level at 1%, and the temperature at 55 °C. The presence of
noise affects the calculations of 7;, sometimes calling for
large swings in the temperature set-point. Thus, the value of
w,, which determines the contribution of 7; to the control
output, must be adjusted to suit both the expected noise level
and temperature.

The wvariability in controller effectiveness that was
demonstrated in the previous two figures can be quantified
by a dimensionless number, hereafter referred to as con-
troller robustness (CR)

> A1) = A)Eons

=0

- Z (AP(I) - As(t))lz\lonCOnlr

=0

R

where A, (7) — Ay(7) is the difference between the remaining
monomer for the desired cure and the actual remaining
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Fig. 6. Illustration of the effect on control quality by varying w, while
holding w; at a value of 0.25, with 1% noise, at 55 °C.

monomer at a particular time during the experiment.
These differences are squared to obtain a positive number
and summed over the entire experiment. The number in the
numerator is a result of an experiment with control. This
number is normalized by the number without control in the
denominator. The simulations to determine the values for
the numerator and the denominator were run with the same
string of pseudorandom numbers when noise was included
in the calculations. For example, a Cg number of 0.01 means
that the quality of control was 100 times better than for the
situation without any control. Thus, the smaller the value of
Cr, the better the control quality.

The controller robustness is characterized in Fig. 7 as a
function of w; and w, at 55 °C and 0% noise for the case
where the commercial catalyst gives the desired cure beha-
vior. As is shown in this figure, control quality is degraded
at the extremes of controller parameters. From the 3D
surface plot, the settings which produce a maximum is
controller efficiency are w; = 0.5 and w, = 0.7. However,
the control quality is still good at w; = 0.5 throughout the
range of w,. The controller robustness is characterized in
Fig. 8 as a function of w, and w, at 95 °C and 0% noise. The
best control is achieved by using w; = 0.77, and w, = 0.25,
but w; in the range 0.6—1 provides very good control for
values of w, less than 0.35 and greater than 0.15. Over the
entire range of control parameters, the 55 °C simulations
achieve better control (lower Cg) than the 95 °C simulations.

The presence of sensor noise degrades the control quality.
The controller performance is characterized as a function of
noise level at 55°C in Fig. 9 using essentially optimal
control parameters (w; = 0.50, and w, = 0.25). As the
noise level increases, the deadband, D, also increases so
that N, = D in all cases. Five pairs of simulations were
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Fig. 7. The controller robustness as a function of w; and w, at 55 °C and 0%
noise for the case where the commercial catalyst gives the desired cure
behavior. Control quality is degraded at the extremes of controller para-
meters. The optimum settings are w; = 0.5 and w, = 0.7.

performed for each noise level to obtain values of Cr. The
data points are the average values of Cg, and the error bars
are the standard error from each data set. At 55 °C, the
controller significantly improves the system performance
even at 10% noise. Similar results to those shown in Fig.
9 are shown in Fig. 10 at a temperature of 95 °C. At 1%
noise, the Cg values for 55 and 95 °C are comparable, with
Cr = 0.012 at 55 °C and Cg = 0.018 at 95 °C. However, for
3% noise level, the value of Cx = 0.11 at 95 °C and Cy =
0.033 at 55 °C. The more rapid degradation in controllabil-
ity at 95 °C could be at least partially compensated for by
decreasing the control interval at 95 °C. Presently, both the
55 and 95 °C simulation data are run at 3 min control intervals.

Fig. 8. The controller robustness as a function of w| and w, at 95 °C and 0%
noise. The best control is achieved by using w; = 0.77 and w, = 0.25, but
w; in the range 0.6—1 provides very good control for values of w, less than
0.35 and greater than 0.15.
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0.20

0.15

Cr

0.10

0.05

0.00 1 I 1 1 )
0 2 4 6 8 10 12

% Noise= % Deadband

Fig. 9. The controller performance is characterized as a function of noise
level at 55 °C using essentially optimal control parameters (w; = 0.50 and
w, = 0.25). As the noise level was increased, the deadband, D, was also
increased so that N; = D in all cases. Five pairs of simulations were
performed for each noise level to obtain values of Ck. The data points
are the average values of Cy, and the error bars are the standard error
from each data set.

Fig. 11 is an example of the controller behavior at 55 °C
where the desired cure (493B catalyst) runs slower than the
actual cure (commercial catalyst). In these simulations, the
initial temperature adjustments require cooling whereas
the initial adjustments were heating in the simulations

0.14 +
0.12 + 1
0.10 4
0.08 +
0.06 -
0.04 +

0.02 +

-
0.00 4 . . :

0 1 2 3 4
% Noise=% Deadband

Fig. 10. The controller performance is characterized as a function of noise
level at 95 °C using essentially optimal control parameters. As the noise
level was increased, the deadband, D, was also increased so that Ny = D in
all cases.
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Fig. 11. An example of the control behavior at 55 °C where the desired cure
(493B catalyst) runs slower than the actual cure (commercial catalyst), the
opposite of the previous simulations.

described in Figs. 9 and 10. The robustness of the controller
is comparable to the robustness in Fig. 9 where the commer-
cial catalyst is designated the desired cure, even with the
discrepancy in the rate of temperature set-point adjustment.

The effect of noise on the optimal values w; and w, is an
important remaining issue. Fig. 12 displays the Cy for
various values of w; and w, around the best values of w; =
0.77 and w, = 0.25 for 95 °C simulations. The controller
robustness degrades with the addition of only 1% noise, as
illustrated by the data with w; = 0.77 and w, = 0.25 when
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Fig. 12. Values of Cy with noise, for various values of w; and w, around
their optimum values for 95 °C simulations.
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Fig. 13. Experimental data with w; = 0.6 and w, = 0.4, for a programmed
temperature of 55 °C. (a) Remaining monomer. (b) Temperature profiles
produced by the controller.

compared to the same controller parameters without noise.
Note that 1% noise and w; = 0.77 and w, = 0.25 is still the
minimum of three different values of w,. From this figure
and other simulations, it was found that the most effective
controller parameters are independent of noise level.

3.6. Experimental results

Experiments were conducted with the HATR cell
described earlier with different values of w; and w,, at
both 55 and 95 °C. All experiments were run with a 1%
deadband. Quality of control is again represented by the
dimensionless number Cy. Fig. 13 shows cure and tempera-
ture data with w; = 0.6 and w, = 0.4, for programmed
temperature of 55 °C. The control quality is given by a
value of Cy of about 0.09. However, this value is substan-
tially larger than the value of 0.045 predicted by the simula-
tion. This difference may be due to using a deadband
slightly smaller than the measurement noise, or from the
larger control interval used in the experiments relative to
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Fig. 14. In an experiment with w; = 0.6 and w, = 0.8, for a programmed
temperature of 55 °C, the temperature set-point displays large, stable oscil-
lations, and the value of Cy is substantially larger than shown in Fig. 13. (a)
Remaining monomer. (b) Temperature profile produced by the controller.

the simulations. Control was executed every 5 min in the
experiment and every 3 min in the simulations. To test
this hypothesis, an additional simulation was run with
0% noise at 55 °C, and with a control interval of 5 min.
The Cg was degraded by a factor of 2 for the 5 min control
interval compared to the 3 min interval, and the Cy
value from the simulation run with a 5 min control interval
was approximately 0.09, in good comparison with the
experiment.

For the more extreme setting of w, and w,, the control
quality degrades. For the experiment with w, = 0.8 in Fig.
14, the temperature set-point displays large, stable oscilla-
tions, and the value of Cy is substantially larger than shown
in Fig. 13. This is aggravated by the fact that the mold does
not reach the set-point temperature during the specified time
interval, calling for an even larger correction the next
measurement. An improvement to the control algorithm
can take into account limited heating and cooling rates.
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Fig. 15. For values of w; = 1.0 and w, = 0.4, with programmed tempera-
ture of 55 °C, there is a large jump in temperature set-point that the heater
cannot accommodate. (a) Remaining monomer. (b) Temperature profile
produced by the controller.

For the condition of w; = 1.0, as shown in Fig. 15, there
is a large jump in temperature set-point that the heater
cannot accommodate. Large temperature increases can
cause large temperature gradients in the mold from runaway
reactions. The optimum temperatures profile should consist
of relatively small and gradual temperature changes. As
expected, the Cy is poorer than for the more moderate
controller parameters.

Control experiments were performed at 95 °C with a
2 min control interval. The achieved control quality is
considerably better at 95 °C than at 55 °C for all choices
of w; and w,. This can be explained by the difference
between the control interval for the simulation and experi-
ments. For 95 °C, the control interval for the experiments
was one-third shorter than for the simulations, leading to
comparable control quality between the simulations and
experiments. For 55 °C, the control interval for the experi-
ments was two times the interval for the simulations, which
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Fig. 16. Experimental data at a programmed temperature of 95 °C using
values of w; = 1.0 and w, = 0.4. The mold temperature cannot reach the
set-point temperature during the early stages of cure. (a) Remaining mono-
mer. (b) Temperature profile produced by the controller.

can account for the degradation of control quality in the
experiments compared to the simulations at 55 °C. It should
be explained that the same control interval was used for the
55 and 95°C simulations so the controller robustness
between the temperature extremes of the kinetic model
could be compared. This control interval is in between the
experimental control intervals for the temperatures.

Fig. 16 uses values of w; = 1.0 and w, = 0.4, chosen
from Fig. 7. These control parameters are expected to
produce good control. In fact, the Cy is excellent. As
seen from this figure, however, the mold temperature
cannot reach the set-point temperature during the early
stages of cure. Lowering w; slightly should produce the
same quality of control with more stability in the mold
temperature.

Figs. 17 and 18 demonstrate control using nonoptimal
settings. Fig. 17 uses the low values of w; = 0.2 and a w, =
0.4. These settings lead to gradual temperature adjustments,
but a degraded Cr when compared to Fig. 16. Fig. 18
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Fig. 17. Experimental data at a programmed temperature of 95 °C using
the low values of w; = 0.2 and w, = 0.4. These settings lead to gradual
temperature adjustments, but a degraded Cr when compared to Fig. 16.
(a) Remaining monomer. (b) Temperature profile produced by the
controller.

illustrates results where both w; and w, were set equal to
1.0. The Cy is similar to that achieved in Fig. 16, but the
temperature profile is highly undesirable.

4. Conclusions

A model-assisted feedback control algorithm has been
developed and implemented with a spectroscopic cure
sensor. This controller was found to be robust using the
control parameters determined by simulations and experi-
ments for a slowly curing polysiloxane resin system. The
controller also performed well under the influence of noise,
with up to 10% noise used in the simulations, and approxi-
mately 2% noise present in the experiments. Most notably,
the values of the most effective tuning parameters appeared
uninfluenced by the presence of noise. Control experiments



854 J.P. Dunkers et al. / Composites: Part A 33 (2002) 841-854

Cr=0.012

Remaining Monomer
o
[oo]
1

0.6 + Actual Cure

— Desired Cure
1 I L 1

0 20 40 60 80 100

Time (min)
(b) 130
120
o
T
o 110 +
=
o
2 100 -
§
'— 1:...' -
= lreal
- N T
setpoint
. + Tapparent
80 1 L 1 1

0 20 40 60 80 100
Time (min)

Fig. 18. Experimental results where both w, and w, were set equal to 1.0.
The Cy is similar to that achieved in Fig. 16, but the temperature profile is
highly undesirable. (a) Remaining monomer. (b) Temperature profile
produced by the controller.

verified the trends in controller efficiency established with
the simulations. The experiments also demonstrated an
acceptable level of control.
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Identification of a commercial product is made only to
facilitate experimental reproducibility and to adequately
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